Telegram Group & Telegram Channel
Что произойдёт, если использовать LabelEncoder с линейным алгоритмом?

▶️ Начнём с того, что такое LabelEncoder.
Это один из самых простых способов закодировать категории. Допустим, у вас есть три категории: «Лондон», «Париж» и «Москва». Тогда вы просто заменяете эти строковые значения на 0, 1 и 2.

В документации scikit-learn написано, что LabelEncoder кодирует целевые метки значениями из диапазона от 0 до n_classes-1 (где n_classes — количество классов). То есть алгоритм предлагается использовать в основном для кодирования целевых меток. Технически его, конечно, можно применять для кодирования нецелевых признаков. Но тут могут возникнуть проблемы.

✍️ Сама суть LabelEncoder способствует созданию избыточных зависимостей в данных. Например, после преобразования получилось, что по некоторому признаку значение объекта Volvo равно 6, а BMW — 1. Можно интерпретировать это как то, что Volvo в 6 раз в чём-то превосходит BMW. Однако в исходных данных таких зависимостей не было.

При работе с категориальными переменными для линейных моделей можно, например, использовать One-Hot Encoding.

#машинное_обучение



tg-me.com/ds_interview_lib/224
Create:
Last Update:

Что произойдёт, если использовать LabelEncoder с линейным алгоритмом?

▶️ Начнём с того, что такое LabelEncoder.
Это один из самых простых способов закодировать категории. Допустим, у вас есть три категории: «Лондон», «Париж» и «Москва». Тогда вы просто заменяете эти строковые значения на 0, 1 и 2.

В документации scikit-learn написано, что LabelEncoder кодирует целевые метки значениями из диапазона от 0 до n_classes-1 (где n_classes — количество классов). То есть алгоритм предлагается использовать в основном для кодирования целевых меток. Технически его, конечно, можно применять для кодирования нецелевых признаков. Но тут могут возникнуть проблемы.

✍️ Сама суть LabelEncoder способствует созданию избыточных зависимостей в данных. Например, после преобразования получилось, что по некоторому признаку значение объекта Volvo равно 6, а BMW — 1. Можно интерпретировать это как то, что Volvo в 6 раз в чём-то превосходит BMW. Однако в исходных данных таких зависимостей не было.

При работе с категориальными переменными для линейных моделей можно, например, использовать One-Hot Encoding.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/224

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Библиотека собеса по Data Science | вопросы с собеседований from es


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA